
International Symposium on Sustainable Aviation 2018 
9 – 11 July 2018 
Rome, Italy 

 

 ISSA-2018-000 

 

EFFECTS OF WEATHER UNCERTAINTY IN SECTOR DEMAND AT TACTICAL LEVEL 

Alfonso Valenzuela, Antonio Franco 
and Damián Rivas 

Dept of Aerospace Engineering  
Universidad de Sevilla 
41092 Sevilla, Spain 

{avalenzuela,antfranco,drivas}@us.es 

Daniel Sacher 
MeteoSolutions GmbH 

64283 Darmstadt, Germany 
daniel.sacher@meteosolutions.de 

Javier García-Heras and Manuel Soler 
Dept of Bioengineering and Aerospace 

Engineering 
Universidad Carlos III de Madrid 

28911 Leganés, Spain 
{javier.garcia-heras, 

masolera}@ing.uc3m.es

SUMMARY 

In this paper, the sector demand at tact ical level is analysed with the main object ive of quanti fy ing the 
effects of weather uncertainty due to the presence of thunderstorms. The source of uncertainty is the 

locat ion of the convect ive cel ls,  which are to be avoided by the aircraft ,  result ing in uncertain deviat ions 
trajectories and, thus, in an uncertain occupancy count.  The analysis is based on the s tat ist ical 

characterizat ion of this count.  Results are presented for a real ist ic appl icat ion. Furthermore, i t  is shown 
that the dispersion of the occupancy count can be reduced i f  the convect ion risk of the individual 

trajectories is reduced in the mid -term planning phase.  
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INTRODUCTION 

In 2005, the European Commission stated the 
political vision and high level goals for the Single 
European Sky and its technological pillar SESAR. 
Accomplishing the goals of increasing capacity and 
improving safety requires a paradigm shift in 
operations through innovative technology and 
research. A promising approach that can improve 
current prediction and optimization mechanisms 
towards meeting these goals is to model, analyse, 
and manage the uncertainty present in Air Traffic 
Management (ATM). Weather uncertainty is one of 
the main sources of uncertainty that affect the ATM 
system (Rivas and Vazquez, 2016). 

The objective of the work presented in this paper 
is twofold. On one hand, to quantify the effects of the 
stochastic evolution of the thunderstorms on the 
prediction of the demand of an Air Traffic Control 
(ATC) sector at tactical level, some minutes before 
operation. On the other hand, to show that these 
effects can be reduced when the airspace users plan 
the route of each individual flight with the objective 
of reducing the convection risk. Results are 
presented for a realistic application. 

In this work, the location and size of the storm 
cells is obtained from Nowcasts. They are 
deterministic short-term forecasts based on the 
actually observed situation (Kober and Tafferner, 
2009). In order to model the weather uncertainty, the 
location of each convective cell is randomly 
perturbed within a given margin. This margin models 
the typical displacement errors of the Nowcasts, 
which increase as the lead-time increases.  

The general framework of this work is the project 
TBO-Met (https://tbomet-h2020.com). The analysis 
and reduction of the effects of wind uncertainty on 
sector demand at pre-tactical level (one day in 
advance) was already presented in (Valenzuela et 
al., 2017a). 

METHODOLOGY 

The general methodology for sector demand 
analysis is presented in detail in (Valenzuela et al., 
2017b); next, it is particularized for the tactical 
problem. 

For each flight the process is as follows. First, a 
reference trajectory is computed by the airspace 
user 3 hours in advance of the departure time. This 
is the trajectory to be filed in the flight plan or the 
Reference Business Trajectory in the future 
Trajectory Based Operations (TBO) concept. In this 
work, this reference trajectory is determined by the 
trajectory planning algorithm described in 
(González-Arribas et al., 2017), which is able to 
reduce the convection risk along the whole 
trajectory. 

It is assumed that the aircraft perfectly executes 
the reference trajectory until it arrives to the 
boundary of an extended area that comprises the 
ATC sector. Thereby, only the uncertainty originated 
by the thunderstorms inside or close to the sector is 
considered in this analysis.  

Once the aircraft enters the extended area, 
different possible deviation trajectories are predicted 
for each flight. These trajectories evade the 
thunderstorms, taking into account the random 
location of the storm cells, and reattach to the 
reference trajectory. They result in different predicted 
entry and exit times to/from the ATC sector under 
study. In this work, the DIVMET algorithm (Hauf et 
al., 2013) generates the deviation trajectories. 

The possible deviation trajectories, and thus the 
predicted times, are updated according to the 
release of new Nowcasts and the movement of the 
aircraft. For flights already inside the extended area, 
the real deviation trajectory followed by the aircraft is 
considered to be the one obtained using DIVMET 
along with the latest available deterministic Nowcast. 
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In this work, the sector demand is described in 
terms of occupancy count: number of flights inside 
the sector during a selected time period. The 
different predicted entry and exit times obtained for 
each flight lead to different predicted occupancy 
counts. The analysis is based on the statistical 
characterization of this count. 

 

Statistical characterization of the occupancy 
count 

It is considered that there exist 𝑚 different flights. 

For a flight 𝑖 (𝑖 = 1, … , 𝑚) the DIVMET algorithm 
performs 𝑛 executions and provides 𝑛𝑖 different 

deviation trajectories considered as equally 
probable (𝑛𝑖 ≤ 𝑛, corresponding to successful 

executions, because in some cases there can be 
spatial distributions of storm cells that DIVMET 
cannot avoid). The position of flight 𝑖 for the deviation 

trajectory 𝑗 (𝑗 = 1, … , 𝑛𝑖) at time 𝑡 is named as 𝐱𝑖𝑗(𝑡). 

If the trajectory 𝐱𝑖𝑗 crosses the ATC sector, then 

there exist an entry time to the sector 𝑡𝑖𝑗,𝐸 and an exit 

time from the sector 𝑡𝑖𝑗,𝑋 (𝑡𝑖𝑗,𝐸 ≤ 𝑡𝑖𝑗,𝑋). If a trajectory 

crosses the sector multiple times, then the entry and 
exit times are considered to be the time of the first 
entry and the time of the last exit, respectively. 

 An occupancy function is defined for flight 𝑖, for 

deviation 𝑗, and for time period 𝑃𝑘 (𝑘 = 1,2, … ), 

denoted as 𝑂𝑖𝑗  (𝑃𝑘). It takes the value 1 when the 

aircraft is inside the sector during this time period (it 
enters, exits, or stays in the sector in this period) and 
the value 0 if the aircraft is outside. If a deviation 
trajectory 𝐱𝑖𝑗 does not enter the ATC sector, then 𝑡𝑖𝑗,𝐸 

and 𝑡𝑖𝑗,𝑋 are not defined and 𝑂𝑖𝑗  (𝑃𝑘) is set to zero: 

𝑂𝑖𝑗(𝑃𝑘) = {

1, if  (𝑡𝑖𝑗,𝐸 ∈ 𝑃𝑘) or (𝑡𝑖𝑗,𝑋 ∈ 𝑃𝑘) or 

(𝑡𝑖𝑗,𝐸 < (𝑘 − 1)δ𝑡  and 𝑡𝑖𝑗,𝑋 ≥ 𝑘δ𝑡),

0, otherwise.

 

 (1) 

where  δ𝑡 is the duration of the time period. 

 The mean, maximum, and minimum values (𝑂̅, 
𝑂𝑚𝑎𝑥 , and 𝑂𝑚𝑖𝑛, respectively) of the occupancy 

count for time period 𝑃𝑘 can be determined from the 

contributions of all the flights as follows 

𝑂̅(𝑃𝑘) = ∑ [
1

𝑛𝑖

∑ 𝑂𝑖𝑗(𝑃𝑘)

𝑛𝑖

𝑗=1

]

𝑚

𝑖=1
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 𝑂𝑖𝑗(𝑃𝑘)]

𝑚
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 (2) 

 The occupancy-count dispersion at each time 
period is defined as the difference between the 
maximum and the minimum values: Δ𝑂(𝑃𝑘) =
𝑂𝑚𝑎𝑥(𝑃𝑘) − 𝑂𝑚𝑖𝑛 (𝑃𝑘). 

Reference trajectory 

 For each flight, the reference trajectory is 
determined before departure by the trajectory-
planning algorithm developed in TBO-Met 
(González-Arribas et al., 2017). This algorithm is 
able to reduce the route exposure to convective 
areas, where individual storms may develop.  

 The necessary meteorological information is 
provided by Ensemble Prediction Systems (EPS), a 
collection of 10 to 50 forecasts, with forecasting 
horizons of up to 2-5 days (World Meteorological 
Organization, 2012). A probability of convection, 𝑝𝑐, 

at each geographical location can be obtained by 
combining two convection indicators: Total Totals 
Index and Convective Precipitation. In this work, the 
wind fields are provided by ECMWF-EPS and the 
probability of convection is derived from GLAMEPS. 

 The trajectory-planning algorithm minimises a 
weighted sum of the average flight time 𝑡(𝑟𝑓) of the 

corresponding 𝑞 ensemble members of the EPS and 

the convection risk, measured as the integral of the 
probability of convection 𝑝𝑐 along the route: 

min [
1

𝑞
∑ 𝑡𝑗(𝑟𝑓)

𝑞

𝑗=1

+ 𝑐𝑝 ∫ 𝑝𝑐𝑑𝑟
𝑟𝑓

0

] (3) 

 The relative weight of the convection risk is 
controlled by the parameter 𝑐𝑝. By changing the 

value of 𝑐𝑝 one can obtain routes that are more 

efficient on average (they arrive earlier) or routes 
that are less risky in terms of convection (less 
probable to run into storms). 

 

Deviation trajectories 

 DIVMET algorithm (Hauf et al., 2013) obtains an 
efficient and safe route to the final destination 
according to the fields of existing and forecasted 
storm cells. It requires an initially planned route (the 
reference trajectory) and storm data as inputs. 

 The storm data is provided by the Spanish 
Agencia Estatal de Meteorología (AEMET). AEMET 
Nowcasts contain estimates of the location of the 
centroid of convective cells and a rectangle 
encompassing the detected convective cells. They 
are released every 10 minutes, with forecasting 
horizons every 10 minutes up to 1 hour. Taking this 
data as input, DIVMET constructs convective cells 
with elliptical shape, which are further extended by a 
safety margin. 

 DIVMET has been adapted to account for 
weather uncertainty as follows: the location of the 
centroid of each convective cell is varied randomly 
within a given range, according to an uncertainty 
margin. The uncertainty margin models the typical 
displacement errors of a storm nowcast, which 
increases as the lead-time increases according to 

the function 𝑓(𝜏) = 0.052𝜏1.56 (lead-time 𝜏 is given 

in minutes). 
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RESULTS 

 The demand of the en-route ATC sector 
LECBLVU is analysed from 6:00 to 13:00 on 19 
December 2016; the geographical location of the 
sector and the extended area are shown in Fig. 1. In 
this application, 257 flights are considered; the 
cruise altitude chosen for all flights is 38600 ft. ATC 
sector and flights data have been obtained from 
Eurocontrol’s NEST and AIRAC cycle 1613. 

 

Fig. 1. ATC sector LECBLVU and the extended area 

 Two different values of the relative weight of the 
convection risk are considered: 𝑐𝑝 = 0 and 

𝑐𝑝 = 0.005 s/m. Therefore, two different reference 
trajectories are determined for each flight. Results 
are shown for both values.  

 The AEMET Nowcasts released at 08:10, which 
identifies 55 different storm cells, is depicted in 
Fig. 2. It can be seen that the sector and the 
extended area are greatly affected by the storms.  

 

Fig. 2. AEMET Nowcast released at 08:10. Detected 
storm cells (blue) and estimation for 10,…,60 min (red) 

 The number of deviation trajectories generated 
for each flight is 𝑛 = 31. As an example, the deviation 
trajectories computed at two different time instants 
for a particular flight and for 𝑐𝑝 = 0.005 s/m are 
shown in Fig. 3. At the first prediction time (09:28), 
when the aircraft enters the extended area, the 
deviation trajectories are very disparate among 
them. The dispersion of the entry time (difference 
between the maximum and the minimum value) is 
rather large (294.9 seconds) because the entry point 

can be located at the Northeast or at the Northwest 
of the sector. The dispersion of the exit time is even 
larger (766.3 seconds). As the flight progresses the 
aircraft comes closer to the storm cells, the 
dispersion is reduced and the deviation trajectories 
are more similar to each other. At the second 
prediction time (09:38), when the aircraft is on the 
verge of entering the sector, the dispersion of the 
entry time is nil and the dispersion of the exit time is 
significantly reduced (386.7 seconds). This behavior 
can be extended on average to all the flights. In 
general, the reference trajectories obtained with 
reduced convection risk, 𝑐𝑝 = 0.005 s/m, show a 

lower dispersion of the entry and the exit times. 

 

Fig. 3. Flight 203221283 and 𝑐𝑝 = 0.005 s/m. 

Executed trajectory (blue) and deviation trajectories 
(red). Time instants: 09:28 (top) and 09:38 (bottom) 

 The occupancy count for 𝑐𝑝 = 0 when predicted 
at two consecutive time instants, 08:30 and 08:40, is 
depicted in Fig. 4. The average occupancy count is 
shown as vertical bars, the minimum and maximum 
counts as whiskers. It is shown for time periods with 
a duration of 1 minute and a maximum forecasting 
horizon of 15 minutes. Although the maximum 
forecasting horizon is short, the dispersion can be 
rather large, up to 4 flights. One can see how the 
count dispersion evolves as the predictions are 
updated. For example, the predicted occupancy 
count for the period 08:44-08:45 is between 4 and 8 
flights when predicted at 08:30, and it is narrowed to 
be between 5 and 6 flights when predicted at 08:40. 
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Fig. 4. Occupancy count for 𝑐𝑝 = 0 predicted at two 

time instants: 08:30 (top) and 08:40 (bottom) 

 The previous example clearly illustrates the 
reduction of the count dispersion when the predicted 
time period is closer to the prediction time. The 
relationship between the dispersion and the 
forecasting horizon is shown in Fig. 5 for the two 
values of 𝑐𝑝. In this figure, the average dispersion by 
forecasting horizon (computed among all the 
predictions made every 10 minutes between 07:30 
and 11:00, when the storm activity is higher) is 
presented. TP generically denotes the time instant at 
which the predictions are made. It can be seen that 
the average dispersion is almost nil for time periods 
very close to the prediction time TP, and that it 

increases as the forecasting horizon increases. It 
can also be seen that, as intended, the dispersion 
decreases as the convection penalty 𝑐𝑝 increases, 

although locally, for some forecasting horizons, it 
may be larger. The average dispersion among all the 
forecasting horizons is reduced from 0.52 flights for 
𝑐𝑝 = 0 to 0.37 flights for 𝑐𝑝 = 0.005 s/m. 

 

CONCLUSIONS 

 In this paper, the effects of the stochastic 
evolution of thunderstorms on the prediction of the 
demand of an ATC sector at tactical level have been 
quantified. Through a particular application, it has 
been found that the dispersions of the entry and the 
exit times can be very large, tens of minutes, which 
lead to large dispersions on the occupancy count. 
These dispersions increase as the forecasting 
horizon increases. It has been also found that the 

 

Fig. 5. Average dispersion of the occupancy count  

dispersions can be reduced if the convection risk is 
taken into account during the trajectory-planning 
process before departure. 

 This work is especially relevant for Air Navigation 
Services Providers: air traffic controllers may know 
more precisely the future demand of the sectors, 
being aware of possible workload peaks. Airlines 
could be also interested in reducing the convection 
risk to increase not only the predictability of their 
individual operations but also of the overall air traffic. 
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