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Abstract—The Air Traffic Management system is evolving to
deal with efficiency, capacity, safety and environmental chal-
lenges. Progress along these fronts requires the development
of trajectory planning and prediction tools that can deal with
a complex and uncertain meteorological and operational con-
text and go beyond the deterministic planning paradigm that
underlies the technologies currently in place in ATM. In this
work, we introduce a novel flight planning methodology to
generate weather-optimal 3D flight plans in structured airspaces.
By leveraging general-purpose computing on graphics processing
units, we can simulate and evaluate multiple trajectory options
under multiple scenarios in parallel, allowing us to provide
quick iterations to a stochastic optimization algorithm. Our
computational experiments show that our implementation can
provide efficient solutions in seconds, as required in practical
settings, while allowing for simple integration of future extensions
thanks to its simulation-based nature.

Keywords—Aircraft trajectories, trajectory optimization, air
traffic control, parallel programming, forecast uncertainty

I. INTRODUCTION

Strong growth in air traffic over the last years is leading to
higher congestion and capacity shortfalls in some of the busiest
airspaces in the world. As an illustration, during the busy third
quarter that comprises the summer years, European airspace
has seen 10-year record levels of delay in 2018 and 2019 [1],
with 17.9 and 15.9 minutes per flight respectively. As the total
amount of movements is expected to keep growing over the
next decades [2], airport and airspace congestion will worsen
unless ongoing and future mitigation efforts prove success-
ful. In addition, the aviation sector faces increasing pressure
to reduce its environmental footprint and to improve cost-
efficiency and safety. By improving the efficiency of aircraft
operations, the Air Traffic Management (ATM) system can
make a critical contribution towards these goals, and multiple
R&D initiatives (such as SESAR in Europe or NextGen in
the US) have consequently been put in place to address the
aforementioned challenges by developing and implementing
new technologies, regulations, and operational procedures.

One critical channel through which these innovation ini-
tiatives can improve ATM performance in multiple areas is
efficient management of uncertainty and predictability. The
ATM system is a complex, interconnected socio-technical
system where uncertainty is a fundamental feature, originating
from multiple sources and propagating to every component of

the system. Successfully preventing, adapting to or recovering
from disruption caused by uncertainty are, therefore, critical
capabilities of a thriving ATM system.

At the center of the uncertainty diffusion process lies the
aircraft trajectory. The execution of any given flight will differ
from the planned trajectory and schedule due to uncertainty
in the outcomes of airport processes (takeoff time and mass),
weather, performance and pilot decisions. Then, as trajecto-
ries share a common airspace, they impact each other indi-
rectly through deconfliction by air traffic controllers and flow
management regulations. Finally, accumulated uncertainty is
spread to arrival aerodromes and other airspace sectors, as
well as through reactive operational modifications by airlines.

Thus, while individual trajectory analyses are by no means
the only relevant topic in ATM-related uncertainty, trajectory
prediction and optimization tools that take uncertainty into
account will grow in importante in the next generation ATM
systems. A healthy amount of effort is now devoted to study of
uncertainty within the context of trajectory prediction (see, for
example, [3], [4], [5], [6] for recent works on modeling various
uncertainty sources); however, trajectory optimization lags
behind prediction in the context of considering uncertainty.

Nonetheless, research interest is growing in this topic: in
[7], it is proposed to employ weather uncertainty information,
in the form of ensemble forecasts, as an input to the tra-
jectory optimization process. Uncertainty quantification ideas
are combined with a trajectory optimization approach in [8]
in the context of conflict resolution. In previous works [9],
we employed ensemble forecasts to model meteorological
uncertainty at the flight planning stage within the context
of a future, fully free-route airspace (FRA). However, the
proposed methods, based on optimal control and direct col-
location, are not applicable the structured airspaces of today.
A FRA is also assumed in [10], where ensemble forecasts are
combined with a trajectory distance metric and a clustering
algorithm to produce robust flight plans; here, robustness is
defined as “optimality within the largest set of scenarios”.
In [11], trajectory shapes are modified by a metaheuristic
optimization algorithm in order to strategically plan traffic
under uncertainty. Again, these works rely on continuous
decision spaces. In contrast, the work of [12] deals with
uncertain flight plan optimization on structured airspaces by



employing mixed-integer linear programming (MILP) tools;
however, the computational cost (measured in minutes) is
sizable and the assumptions are restrictive: fuel burn and its
associated nonlinearities are disregarded and a single flight
level is assumed.

Furthermore, even if one disregards uncertainty entirely,
merely modeling these nonlinearities due to four-dimensional
weather, nonlinear performance functions and other potential
factors (such as convection or airspace congestion) represents a
major algorithmic challenge. The traditional approach, widely
applied in industrial practice, is often based on simplifying
assumptions that reduce the problem to a two-stage process,
starting with a shortest-path problem on the airspace graph
to determine the route and finishing with the optimization of
the vertical profile (altitude and airspeed) [13]. While this
approach has been successful and provides good solutions
most of the time, it is hard to extend it to incorporate additional
features in efficient fashion and to consider the interplay be-
tween the vertical and the lateral profiles. Recent works, such
as [14] and [15], show great progress in developing effective
heuristics to path planning algorithms such as A? in order
to tackle the 3D flight planning problem in a deterministic
fashion. Nevertheless, it is not clear whether these heuristics
can be extended to incorporate the additional features that will
soon be demanded by incoming technologies and paradigms.

In summary, there is a clear need for flight planning
algorithms in structured airspaces that 1) tackle the vertical
and lateral profile in an integrated fashion, 2) consider the
nonlinearities associated with performance and 4-dimensional
weather and 3) are able to incorporate uncertainty and 4)
are flexible enough to incorporate more complex features as
extensions.

One potential piece of the puzzle was introduced in [16].
By leveraging the computational power of general-purpose
computing on GPUs, it is possible to quickly simulate multiple
flight options under multiple scenarios to feed an optimization
algorithm. Furthermore, by using a simulation-based approach,
incorporating new features is a natural extension. However, the
mentioned work dealt again with free-routing airspaces only.

In the current work, we propose a computationally efficient
and extensible flight planning solution in structured airspaces.
By developing novel modelling concepts, based on the opti-
mization over probability distributions of flight plans, we show
that this parallel-simulation-with-optimization approach can be
extended to structured airspaces with the same advantages. In
addition, we implement a randomized optimization algorithm,
inspired by popular techniques in stochastic optimization, that
leverages this parallel simulation framework to produce near-
optimal flight plans in a timescale of seconds.

The paper is organized as follows. After the introduction
(Section I), we overview the mathematical implications of
flight planning concepts under uncertainty in Section II. Sec-
tion III introduces the modelling and simulation strategy, while
Section IV delves into the optimization methodology. We
show preliminary results from our prototype implementation
in Section V and finish up with some conclusions and future

work in Section VI.

II. OPERATIONAL FRAMEWORKS UNDER UNCERTAINTY

In a deterministic operational setting, where it is assumed
that the relevant outcomes can be computed a priori for any
action sequence, a lot of practical considerations regarding
the implementation of these actions (such as when or how
frequently can flight plans be computed or modified, or when
is relevant information available) do not impact the formula-
tion of the corresponding mathematical optimization problem.
However, if one allows for the existence of uncertainty or
stochasticity in some of the involved variables, this conclusion
no longer holds. In that case, the resulting mathematical opti-
mization problem depends not only on the shape, magnitude
or structure of this uncertainty, but also on the operational
framework that determines when and which actions can or
must be taken in response to unexpected conditions. Making
different assumptions about the operational context leads to
different kinds of dynamic optimization problems. In the scope
of this work, we will employ the following taxonomy:
• In a “naı̈ve” or deterministic flight planning framework,

uncertainty is deemed to be negligible or, alternatively, it
might be assumed that the optimal decision is close even
if the outcome is uncertain. Any unexpected development
is managed afterwards, possibly by amending the flight
plan during execution with another deterministic calcu-
lation. This approach is the simplest and often close to
optimal, but it may result in inefficient flight plans and
heavily degraded ATM performance in certain instances,
such as days of intense convective activity featuring
numerous reroutes and conflicts.

• The robust flight planning concept assumes that the
computed flight plan will be followed closely, but the
performance in terms of variables such as fuel burn or
arrival time will be impact by uncertainty. Therefore,
the aim is to design a flight plan that is not merely
optimal for a baseline scenario, proving instead good
performance across a number of potential realizations
of the uncertainty. Thus, this concept represents a more
realistic representation of actual aircraft operations than
the deterministic one.

• The dynamic flight planning framework allows the flight
plan to be continuously modified as the uncertainty is
realized; this is the approach taken under models based on
Markov Decision Processes (MDPs). By taking advantage
of all the information available until the implementation
of a control decision, as well as the possibility of taking
multiple choices in the future, employing this framework
could let a single aircraft attain the best theoretical
efficiency. However, current technologies and operational
procedures do not support constant flight plan updates
because of the associated CNS and controller workload
requirements. Therefore, this concept corresponds to a
potential future ATM system rather than the present one.

• Finally, a hybrid setting combines elements of both
the robust and dynamic paradigms, by assuming that



flight plans can be amended while being executed but
opportunities to do so are limited or costly. While this
approach leads to challenging mathematical modelling, it
is the closest to current and near-term operations.

In the current work, we will work within a robust frame-
work, as in the works mentioned in Section I; however,
we will also introduce some ideas connected to the hybrid
concept when discussing probabilistically-executed flight plans
in Section IV-A.

III. FLIGHT PLAN SIMULATION

We consider the problem of determining the optimal flight
plan in a structured airspace under uncertainty. For the pur-
poses of exposition, we restrict ourselves in the current work
to consider only the cruise phase of the flight, as it illustrates
the main principles of our proposed approach.

A. Modelling

The airspace structure is modeled as a directed acyclic graph
G = (V,E), where V represents a set of navigation waypoints
that are connected by airway edges e ∈ E. We define as
Out(n) the set of airway segments outgoing from node n.
The cruise is assumed to start at the first waypoint after the
top of climb; we denote it as the origin node o ∈ V ; similarly,
we asume that the trajectory will end at the last node before
the top of descent, the destination node d ∈ V . We assume
that the graph has been preprocessed to remove any node from
which there is no path to the destination node. The aircraft is
allowed to change its airspeed over the cruise phase within
its flight envelope, and it is allowed to perform step climbs
and/or descents between discrete flight levels when entering a
new airway segment (though the frequency of those changes
will be restricted, as described in Section IV-A).

In this setting, a flight plan F is described by a tuple
(R,FL,M), where:
• R represents the route or lateral path; it is represented by

a valid non-cyclic path between the origin and destination
nodes, i.e., a sequence of waypointsR := (r0, r1, ..., rnr

)
such that r0 = o, rnr

= d, rk ∈ V ∀k ∈ {1, . . . , nr},
{rk, rk+1} ∈ E ∀k ∈ {1, . . . , nr − 1} and ri 6= rj when
i 6= j.

• A vertical profile FL, composed by an ordered sequence
of tuples of the form (rk,FLk) indicating that the aircraft
will switch to the flight level FLk when reaching the
waypoint rk.

• An Mach schedule M := (M0, ...,Mnr ) indicating the
target Mach number Mk at waypoint rk

To obtain the performance associated to a flight plan, we
must compute the corresponding trajectory with a dynamical
model of the aircraft. As is commonly done in ATM studies,
the state of the aircraft is assumed to evolve according to
the point-mass model, where the aerodynamic and propulsive
performance of the aircraft is given by the BADA model[17],
[18]. Neglecting turn dynamics and flight path angle dynamics
(which take place at relatively fast timescales for the flight
planning problem), the equations of motion are the following:

Equations of motion

State variables: φ, λ, h, v, m

Control variables: CT , γ, χ

Differential equations:

φ̇

λ̇

ḣ

v̇

ṁ


=



v cos γ cosχ+ wy

(RM (φ) + h)

v cos γ sinχ+ wx

(RN (φ) + h) cosφ

v sin γ

T(CT )− D(CL)

m
− g sin γ

−fc(CT )



where CL(γ) =
2mg cos γ

ρv2S
Here, the state is composed by the latitude φ, the longitude

λ, the altitude h, the true airspeed (TAS) v and the mass m,
while the control vector is composed by a thrust coefficient
CT , the flight path angle γ and the true heading is χ. In
addition, (wx, wy) are the components of the wind, RM
and RN are the Earth’s ellipsoid radii of curvature in the
meridian and the prime vertical respectively, T and D are
the magnitude of the thrust and drag forces, g is the Earth’s
gravity, fc is the fuel burn rate and S is the wetted surface
of the aircraft. For clarity, the functional dependences on
the remaining environmental variables (the air density ρ, the
temperature T and the pressure P ) have been omitted; the
Mach number M can be computed with the usual formula
M = v/a(T ), with a being the speed of sound on dry air at
temperature T .

As the weather variables at a given pressure level
(ρ, T, wx, wy) are taken from a forecast, there is some degree
of uncertainty in their values, due to incomplete knowl-
edge of the state of the atmosphere, model error in physi-
cal parametrizations, computational limitations and nonlinear,
sometimes chaotic, dynamics. We will characterize this un-
certainty by employing Ensemble Prediction System (EPS)
forecasts, a standard tool in modern meteorology for dealing
with uncertainty[19]. An EPS is composed by NEPS indi-
vidual forecasted scenarios (with EPS usually ranging from
10 to 50), called “ensemble members”, each one run with
strategically perturbed initial conditions or model parameters,
thus providing a probabilistic estimation of the future state
of the atmosphere. In this work, we denote the set of all
weather-related variables as a random variable W that takes
discrete values in the set {W1, . . . ,WNEPS} with probability
P(W =Wj) = N−1

EPS ∀j.
Note that the route specified by the flight plan fixes the

Mach number (which, for a given temperature, determine the



true airspeed v) as well as the course ψ at any point in
the trajectory. Therefore, as the velocity composition on the
horizontal plane shows (see Figure 1), any uncertainty in the
magnitude and direction of the wind will generate uncertainty
in the heading and, most, importantly, the groundspeed, which
determines the time at which the aircraft will overfly each
waypoint in the route, as well as how much time the aircraft
will spend at each leg (thus influencing fuel burn). Uncertainty
in temperature, which determines the propulsive and aerody-
namic performance of the aircraft as well as the airspeed, will
also contribute to uncertainty in fuel burn.

True 
Airspeed
(TAS)

W

Heading

Wind 
speed

Ground
speed

E

S

N

Course

Fig. 1: Wind triangle when γ ≈ 0

Finally, the time at which the aircraft crosses the origin
node is modelled as a Gaussian variable t0 ∼ N (t̄0, σt0);
analogously, the mass of the aircraft at the origin node is
m0 ∼ N (m̄0, σm0

). Both quantities may be correlated, with
a correlation coefficient ρmt; they are assumed to be indepen-
dent of the weather realization, though again this assumption
can be relaxed. As these distributions will be accessed by the
algorithm by sampling, other distributions can be employed
by the algorithm.

B. Trajectory Integration

For a given realization ofW , t0 and m0, we can compute in
a deterministic fashion the trajectory associated to a flight plan
F and obtain the performance figures of interest; in this work,
we will restrict ourselves to the consideration of the final mass
m0 and the arrival time tf . The corresponding calculation,
which we will now proceed to explain briefly, is denoted by:

[tf ,mf ] = TI(F ,W , t0,m0) (1)

Where TI stands for “trajectory integration” In order to
perform this integration, each airway segment in the route R
is discretized into an equispaced grid of geographical points,
with a resolution that allows a step climb to be performed in a
single interval (though finer grids can be employed by slightly
modifying the calculation method). Then, the grid conformed

by the union of the grids of every segment in the route is
employed to integrate the following two differential equations:

dt

ds
= v−1

G (2)

dm

dt
= −fc(CT,req) (3)

where s is the ground distance flown, vG is the groundspeed
(computed from h, v, γ, ψ and (wx, wy) through geometrical
relationships) and CT,req is the thrust parameter required to
match the altitude and speed profile. The integration scheme
employed is Heun’s method, which approximates the solution
of an ODE system of the form ẏ(t) = f(t, y(t)) by:

ỹi+1 = yi + ∆tf(ti, yi) (predictor)

yi+1 = yi +
∆t

2
[f(ti, yi) + f(ti+1, ỹi+1)] (corrector)

(4)

where the step size ∆t is determined by the spacing between
grid nodes. While both equations are integrated in lockstep, the
time evolution (independent of the mass profile) is integrated
first, increasing the accuracy of the mass calculations.

We can now define the expected final mass and time as:

[E[tf ],E[mf ]] = E [TI(F ,W , t0,m0)] (5)

We can approximate the expectation operator by an un-
weighted average between all ensemble members {Wj}:

[E[tf ],E[mf ]] ≈ 1

NEPS

∑
j

TI(F ,Wj , t
j
0,m

j
0) (6)

where we sample tj0,m
j
0 ∼ t0,m0 independently for each

member in Monte Carlo-like fashion. As each calculations
performs the same (or very similar) operations on different
data, this computation can be easily parallelized in order to
compute the trajectory in each scenario quickly; then, the
sum can be done using parallel reduction techniques. We do
so by employing CUDA[20], [21], a framework for general-
purpose computing on Graphics Processing Unit (GPGPU) on
devices manufactured by NVIDIA. Additionally, this choice
allows us to employ the texture units on a GPU to perform
fast interpolation of the weather variables.

IV. PROBABILISTIC FLIGHT PLAN GENERATION

We will now proceed to employ the scheme described in
Section III-B to generate optimized flight plans. To do so, we
must start by defining the objective function to be optimized.
Again, while we note that our approach could accomodate a
number of extensions, we choose a common objective in ATM:

J(F) = m̄0 − E[mf ]︸ ︷︷ ︸
expected fuel burn

+ CI · (E[tf ]− t̄0)︸ ︷︷ ︸
expected flight time

(7)

where CI denotes the “cost index”, i.e., the relative cost of
time with respect to fuel, in the view of the user. Our goal is,
then, to solve the following optimization problem:

min
F
J(F) (8)



As discussed in Section I, optimizing directly on the flight
plan decision space (which is composed by both discrete and
continuous decision variables that may interact in nonconvex
fashion) is challenging and prevents the use of gradient-based
and gradient-inspired methods, the main workhorse of applied
optimization. Instead, we will borrow a popular technique from
some reinforcement learning algorithms [22]; we will replace
the problem defined by Equation 8, where optimization is
performed on the space of possible flight plans, by the problem
defined by Equation 9, where optimization is performed on the
space of probability distributions defined over flight plans.

min
p(F)

Ep(F)[J(F)] (9)

If F? is the optimal solution of Problem 8, with optimal cost
J?, then a probability distribution that has P(F = F?) = 1
produces the same value of J in Problem 9; it is also clear
that Ep[J(F)] ≥ J? if p is a valid probability distribution.
Therefore, both formulations are equivalent, but the second
one may be easier to search; we can do so by parameterizing
the distribution p with a parameter vector θ ∈ RΘ and defining
a third variation of the problem:

min
θ

Ep(F ;θ)[J(F)] (10)

This problem is no longer equivalent in general to the first
problem, as it depends on whether the parameterization can
represent a distribution where P(F = F?) = 1. If it cannot,
then the optimal solution of Equation 10 may be worse than
the optimal solution of Equation 9 by a finite amount. We will
present our chosen parameterization in Section IV-A, while
describing how it can accomodate solutions that are arbitrarily
close to the optimal non-probabilistic flight plan.

A. Flight Plan Encoding

We introduce the Probabilistic-execution Flight Plan (PF )
as a distribution over the space of possible flight plans. In a
PF , the aircraft may take any path between the origin and the
destination nodes: when arriving at a node, it can then choose
any of the outgoing airway segments. The probability of
choosing each airway is determined by a vector of parameters
Φ ∈ Rncr in a manner that will be described afterwards. In
a regular flight plan, the flight level changes and the Mach
profile are defined only along the chosen route; instead, in a
PF , the target Mach numbers M̂ ∈ R|E| and flight levels
F̂L ∈ R|E| (note that | · | denotes the cardinality of a set) will
be defined in the entire graph, regardless of whether they lie
within the sampled route or not. Thus, we define the parameter
vector of a PF as:

θ =

 Φ

M̂
F̂L

 (11)

To sample the route of a PF , a vector of i.i.d. uniform
random variables ξcr ∼ U(0, 1) ∈ Rncr is generated. Then,
we compute a vector of bits b ∈ Rncr with the following rule:

bi =

{
1 if S(Φi) ≤ ξi
0 if S(Φi) > ξi

(12)

where S is a sigmoid function S(x) =
1

2

(
1 +

x√
1 + x2

)
.

Each waypoint with more than one outgoing airway segment
is assigned one or more of these bits; the resulting binary
number determines the chosen airway. Thus, the parameters
Φ influence the likelihood that any airway is chosen. Clearly,
as the parameters Φ grow towards∞ or −∞, the route choice
converges to a deterministic lateral path, thus converging
towards the corresponding deterministic performance.

To complete the sampled flight path, it is necessary to
generate the Mach schedule and the flight level switching
profile. We will do so by introducing a probabilistic Mach
and flight level switching feature that is not required by the
probabilistic transformation, but is instead important for the
operational acceptability of the solution (though it can be
disabled with certain choices of the corresponding parameters).
In first place, we the Mach and flight level (FL) “guidance”
profiles as smoothed versions of the profile determined by the
FL and Mach values of the segments. In second place, the
actual Mach number and flight level switch to the discrete
value that is closest1 to the guidance profile in a probabilistic
fashion, with the switching probability being small until a
certain distance has been flown since the last change. In
this way, we prevent continuous Mach adjustments that may
generate undesired wear in the engines and we limit the
frequency of the flight level changes, in order to prevent
very frequent climbs and descents that would generate extra
workload for the air traffic controllers.

Algorithm 1 formalizes the described process for sampling
the PF . We define the following parameters and notation: ||l||
denotes the length of leg l, `M and `FL denote respectively the
Mach and FL guidance smoothing factors, DM and DFL denote
the average minimum distance between switches, and σM and
σFL denote the execution variability of these changes. M̂l and
F̂Ll denote the target Mach and flight level for the segment l
(from the parameter vector θ).

The rationale for the probabilistic formulation of the route
choice is the one exposed at the beginning of Section IV,
i.e., for convenience of optimization; however, the probabilistic
formulation of the profile adjustment can also be justified by
the existence of uncertainty in the time at which the aircraft
obtains ATC clearance to move to an adjacent flight level.

B. Optimization

As the PF corresponding to a vector of parameters θ is now
stochastic, evaluating Eθ[J(F)] := Ep(F ;θ)[J(F)] requires
sampling multiple flight plans and executing them. However,
we can take advantage of the fact that we are already sampling
on the environmental uncertainty to sample simultaneously on
the space of exogenous sources of uncertainty and on the space
of potential flight plans associated to θ:

1For the flight level changes, available flight levels are separated by jumps
of 2000 feet; for the Mach profile, available settings are multiples of 0.01



Algorithm 1: Sampling a flight plan from a PF
1 Initialize R← (o), M← (M0), FL← (FL0)

2 Initialize WP ← o, M← M̃← M0, FL ← F̃L← FL0

3 Initialize LFL ← 0 # Distance since the last FL change
4 Initialize LM ← 0 # Distance since the last Mach

change
5 Sample ξcr ∼ U(0, 1) ∈ Rncr

6 Sample ξFL ∼ U(0, 1) ∈ R|E|
7 Sample ξM ∼ U(0, 1) ∈ R|E|
8 while WP 6= d do
9 WP+ ← next waypoint (WP, ξcr, Φ)

10 l← {WP, WP+}
11 δM ← ||l||/`M
12 δFL ← ||l||/`FL

13 M̃← (1− δM)M̃ + δMM̂l

14 F̃L← (1− δFL)F̃L + δFLF̂Ll
15 if S((LFL −DFL)/σFL) ≥ ξlFL then
16 if F̃L ≥ FL + 10 then
17 FL ← FL + 20
18 LFL ← 0
19 Append (WP+, FL) to FL
20 else if F̃L ≤ FL - 10 then
21 FL ← FL - 20
22 LFL ← 0
23 Append (WP+, FL) to FL

24 if S((LM −DM)/σM) ≥ ξlM then
25 M ← 0.01· round2int(100 · M̃)
26 LM ← 0

27 LFL ← LFL + ||l||
28 LM ← LM + ||l||
29 Append M to M
30 Append WP+ to R
31 WP ← WP+

[m̂f , t̂f ] =
1

NEPS

∑
j

TI(Fj ,Wj , t
j
0,m

j
0) (13)

Eθ[J(F)] ≈ Ĵ := m̄0 − m̂f + CI ·
(
t̂f − t̄0

)
(14)

where Fj is sampled from θ independently. In this way, we
can reduce the problem to the stochastic optimization problem:

min
θ

E[Ĵ ] (15)

We employ Algorithm 2 to optimize this objective function.
The described method is based on the V1 version of the
Augmented Random Search (ARS) algorithm from [23]. From
a starting point θ0, this scheme produces progressively better
iterates by generating n random search directions ω ∈ RΘ

and estimating Ĵ+ := Ĵ(θ + Sω) and Ĵ− := Ĵ(θ − Sω),
where S ∈ RΘ×Θ is a diagonal scaling matrix. Then, the
decision variables θ are advanced along every search direction
in proportion to the differential Ĵ+ − Ĵ−. Thus, ARS can

be thought of as a kind of estimated gradient descent, where
the estimated gradient is computed through centered finite
differences on a projection along random directions.

The algorithm allows us to take full advantage of the high
degree of parallelism offered by modern GPUs, as we are now
sampling along a new dimension; i.e. we are evaluating TI(·)
2n×NEPS trajectories simultaneously each iteration. In order
to increase convergence speed, we add one of the “momentum
with lookahead” heuristics studied in [24] to the algorithm; we
denote the update velocity as ν ∈ RΘ. Note that, since we are
not solving a problem of the form studied in [23], there are
some minor differences in the definition of the decision vector,
which in our case is closer to what these authors name “Basic
Random Search”.

Algorithm 2: Augmented Random Search with Nes-
terov updates

1 Hyperparameters: step-size α, Nesterov momentum
factor β, number of directions sampled per iteration
n, diagonal scaling matrix for the exploration noise S

2 Initialize: ν ← 0, θ ← θ0

3 while stopping condition not met do
4 Sample ωi ∼ N (0, 1) ∈ RΘ, i ∈ {1, . . . , n}
5 r+

i = Ĵ(θ + βν + Sωi), i ∈ {1, . . . , n}
6 r−i = Ĵ(θ + βν − Sωi), i ∈ {1, . . . , n}
7 r̄ ← 1

2n

∑
i(r

+
i + r−i )

8 σR ←
√

1

2n

∑
i

(
(r+
i − r̄)2 + (r−i − r̄)2

)
9 ν ← βν − α

nσR

∑
i

(r+
i − r

−
i )ωi

10 θ ← clamp(θ + ν)

Here, clamp(·) is a function that projects the updated
decision variables inside the flight envelope, to prevent the
proposal of infeasible actions to the simulation engine.

V. RESULTS

We study the flight of a narrow-body twinjet taking place the
7th of June, 2018, from a waypoint in the neighbourhood of
Madrid to a waypoint in the neighbourhood of Berlin. For the
route graph G, we take the full airspace graph from that day
and generate the subgraph induced by the paths with length of
at most 102.5% of the length of the minimum ground distance
path; the integration resolution is set to 10 nmi. The weather
forecast is taken from the ECMWF EPS[25].

We launch the simulations on a consumer-grade NVIDIA
1060 GTX graphics card, a device featuring 1280 CUDA cores
at a clock speed of 1.6 GHz; we perform the calculations
on single-precision. Table I describes the setup of the main
computational hyperparameters; only basic tuning has been
performed in them, suggesting that systematic tuning or auto-
matic scheduling at different optimization epochs may improve
the computational performance.



Parameter Value Parameter Value
`M 200 nmi `FL 100 nmi
DM 250 nmi DFL 300 nmi
σM 10 nmi σFL 10 nmi
α 0.02 β 3/4
n 25 S (for Ψ entries) 1
NEPS 32 S (for M entries) 0.15

S (for FL entries) 15

TABLE I: Parameter values

Figure 2 illustrates the performance profile of the opti-
mization process for CI = 0.5 kg/s, i.e., the comparison of
the performance of the algorithm for 100 different runs. The
two inner bands represent the inner 66 and 90 percentiles,
while the lighter outer band represents the full range of the
profiles. It can be observed that the optimization process
converges consistently to the optimum performance, and it
does so quickly, with almost all of the runs converging close
to the optimum in around 600 iterations. In our machine,
that takes around 2 seconds, which is compatible with desired
computational speeds for operational flight planning tools.
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Fig. 2: Performance profiles.

The obtained lateral route is represented in Figure 3, along
with the route network considered and the shortest path in
the graph. It illustrates the principle that the shortest path
in geodesic terms is not necessarily the optimal path in
the presence of weather, as winds and temperature play a
significant role in route efficiency.

We now proceed to solve the problem for different values
of the Cost Index parameter. The route is the same in all of
the three cases, but the vertical profile (Figure 4) shows some
differences. Looking at the Mach profile, the solutions exhibit
expected behaviour: the optimal speed profile increases with
higher CI settings, as the optimizer chooses to arrive faster at
the cost of burning more fuel. The true airspeed shifts along the
route due not only to Mach changes, but also to temperature
variations with location and altitude. We can observe that the
optimal flight level is higher for the low CI case. Finally,
Figure 5 compares the groundspeed profiles (as well as their
uncertainty) between different values of the cost index, as well
as the additional cumulative fuel burn and flight time with
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Fig. 3: Lateral route and FL 300 wind forecast for t0
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respect to the minimum-fuel case. We can verify that, indeed,
the higher CI solutions end up burning more fuel in order to
shave a few minutes off the total flight time.

VI. CONCLUSIONS

In this work, we have introduced a flight planning ar-
chitecture able to handle 4D flight planning problem under
uncertainty in an extensible and efficient manner. We have
done so by introducing novel modelling concepts that allow us
to harness the highly parallel computational power available in
modern GPUs in order to compute trajectories under multiple
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scenarios and multiple flight plan options simultaneously. By
exploring the decision space in a probabilistic fashion, we can
make use of effective stochastic optimization algorithms to
quickly obtain a solution, and thus meet the computational
demands of the future ATM toolchains.

This work opens up some potential avenues for future work
that we intend to explore. The first path involves tuning and
improving the algorithm to enhance its convergence properties,
as well as designing test campaigns to characterize the perfor-
mance of the algorithm and ability to find the best optima
under multiple conditions and flight types.

The second one is to leverage the simulation-based nature
of the proposed solution to incorporate additional factors such
as climb and descent profiles, overflight costs, convective cell
developments or airspace congestion, thus proving its ability to
deal with the complex problems for which it was introduced.
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