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Abstract—A main objective of Air Traffic Flow Management is
matching airspace and airport capacity with demand. Being able
to accurately predict unexpected disruptions to the air traffic
network, such as convective weather is essential in order to
make better informed decisions and improve performance of the
system. In this paper we demonstrate how machine learning can
improve prediction of convective areas at time horizons necessary
for the pre-tactical phase of ATFM. Data from numerical weather
prediction forecast are merged with storm cell observations from
satellite and used to train a neural network model to identify
convective areas at time horizons up to 45 hours. Results show
the neural network model outperforms an existing convection
indicator in predicting thunderstorms.
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I. INTRODUCTION

Weather is a major disrupter to the air traffic system. In
2018, 4.8 million minutes of en route ATFM delay were
attributed to adverse weather in the European airspace [1].
Convective weather is a main source of disruption, causing the
majority of delays to occur during the summer months. Despite
advances in weather forecasting techniques, aviation weather
products used during pre-tactical ATFM operations are limited.
In Europe, EUROCONTROL’s Network Operations Portal
(NOP) provides a Daily Network Weather Assessment [2]. The
assessment is a document containing a brief written description
of the general weather outlook for the Network, and severe
weather alerts for en route airspaces and airports. The weather
assessment also contains a series of static maps providing
forecasts of temperature, winds and precipitation for the day.
While this daily product is useful in providing some awareness
of the meteorological conditions for the day, it fails to capture
evolving weather phenomena such as convection. As a result,
convective weather is typically managed tactically leading to
inefficiencies in ATFM measures.

In the US, Federal Aviation Administration traffic managers
must obtain high confident forecast with 2 - 8 hours lead time
in order to effectively minimise disruptions in the network
due to weather. In the case of a large scale weather impact, a
Severe Weather Avoidance Plan (SWAP) may be put in place
to completely relocate demand to another part of the country
[3]. Having insight on where in the network thunderstorms

are likely to develop could allow for re routing of en-route air
traffic and improve ATFM efficiency.

In this paper we develop a methodology to train a neural
network (NN) model to predict convective weather with the
precision required to improve pre-tactical ATFM decisions
for the en route environment. Our research makes use of
observational and forecast weather data to formulate a binary
classification supervised learning algorithm for identifying
convective areas.

II. WEATHER INFORMATION

Weather information can be grouped into two categories;
observation and forecasts. Weather observations can be made
via radiosondes, radar, satellite or any other observing system
to provide the current state of the atmosphere. In our research
we use satellite observations from the Rapidly Developing
Thunderstorm (RDT) product provided by the European Or-
ganisation for the Exploitation of Meteorological Satellites
(EUMETSAT).

Weather forecasts typically rely on numerical weather pre-
diction (NWP) which use fluid dynamic and thermodynamic
mathematical models to predict the state of the atmosphere up
to multiple days into the future. In our research we use the
Ensemble Prediction System (EPS) product from the European
Centre for Medium-Range Weather Forecast (ECMWF).

A. Rapidly Developing Thunderstoms - Observation

The Rapidly Developing Thunderstorm (RDT) product is a
satellite based software by EUMETSAT capable of tracking
and identifying convective cloud cells i.e. thunderstorms. The
RDT product covers the geographical region of Europe, and
outputs storm data on a 15 minute interval. For each cloud cell,
the RDT product can define a series of parameters including
the location, shape, movement, severity, and lifecycle phase.

B. Ensemble Prediction System - Forecast

Ensemble forecasting is a technique based on numeric
weather prediction models where small perturbation are made
to model initial conditions producing multiple forecasts. Given
that each forecast or member began from similar initial con-
ditions, they have a tendency to behave similarly in the short-
term but deviate over longer time horizons defining a domain



of possible weather outcomes. Using the pool of members, it
is possible to predict the probability that a particular weather
event of interest might occur. The EPS product is comprised
of one control member, using the most accurate estimate of
the initial conditions plus 50 perturbed members. Furthermore,
an additional member at a higher spatial resolution (HRES) is
also produced. The 52 members are created twice a day at
times 00:00 and 12:00 and provide a forecast up to 15 days
ahead [4]. For this research we focus on the data solely from
the 50 perturbed members, we make use of forecast provisions
for the next 45 hours in 3 hour steps. The spatial resolution of
the EPS grid is a quarter of a degree in latitude and longitude,
assuming the rule of thumb of 60 nautical miles per degree,
this equates to roughly 15 nautical miles between grid points.

III. BASELINE CONVECTION INDICATOR

It is possible to define an indicator for convection to
anticipate where thunderstorms will develop using two pa-
rameters from the EPS; Total Totals Index and Convective
Precipitation [5]. Total Totals Index (TT) is a representation
for the temperature gradient and moisture in the lower levels
atmosphere. Convective Precipitation (CP) is the accumulated
water that falls to the Earth’s surface and is generated by
convection. Convection can be defined as an area where there
is precipitation and the total totals index value is above a
certain threshold. Thus we can evaluate each point of the
numerical weather prediction model for convection using the
following logistic expression:

Convection = (TT>TTTH) ∧ (CP>0)

Where TTTH is defined as the TotalsTotals Index threshold
value based on the level of convection of interest.

• 44-45 isolated moderate thunderstorms
• 46-47 scattered moderate / few heavy thunderstorms
• 48-49 scattered moderate / few heavy / isolated severe

thunderstorms
• 50-51 scattered heavy / few severe thunderstorms and

isolated tornadoes
• 52-55 scattered to numerous heavy / few to scattered

severe thunderstorm / few tornadoes
• 55+ numerous heavy / scattered severe thunderstorms and

scattered tornadoes
We are able to obtain the probability of certain level

convection by calculating how many members out of 50 meet
the convection criteria.

Figure 1 shows a graphical representation of the convection
indicator, throughout our analysis this indicator will be used
as a baseline to provide a comparison with our algorithm.

IV. MACHINE LEARNING ARCHITECTURE

The learning task was to correctly identify where thun-
derstorms will develop (convective areas) based on the EPS
forecast. We formulated the task as a supervised learning
binary classification problem. A neural network model was
trained with historical forecast parameters (i.e. EPS data)

Figure 1: Baseline convection indicator for multiple levels of
convection. Data taken from the 12:00 release EPS forecast
for June 8th, 2018 at 15:00.

as the independent variables and the corresponding storm
observations (i.e. RDT data) as the dependent variable.

A. Dataset

Our dataset consisted of 14 days from the summer season of
2018, these days were selected due to their strong convective
activity. For each day, the thunderstorm observational data
from RDT and the corresponding forecasts from the previous
45 hours were used. Our 14 day dataset was split randomly
to provide 8 day for training, 3 days for validation and 3 days
for testing the model.

B. RDT Data Processing

A series of preprocessing steps were needed to transform the
RDT data to match the spatiotemporal resolution of the EPS
parameters. First, to merge the data in the spatial domain,
the RDT convective cell polygons needed to be represented
on a grid matching the EPS resolution, see Figure 2a. A grid
pattern was projected onto the RDT polygons so that center of
each square corresponded with EPS latitude-longitude points.
A point was considered to contain to a thunderstorm if a storm
polygon was present in the square surrounding the EPS point.

Second, given that EPS forecast has a 3 hour time step and
the RDT satellite observations are provided every 15 minutes,
it was necessary to reconcile this time difference in order to
integrate the data. We decided to aggregate the storm data
in time, by counting how many instances of thunderstorm
were present at a point within a 3 hour period, see Figure 2b.
The aggregated values ranged from 0, where no thunderstorms
were present, to 12 where thunderstorms were present for the
entire 3 hour window.

Lastly, the aggregated RDT data was converted into a binary
representation, with 0 representing non-convective areas and 1
representing convective areas, see Figure 2c. In this way our
machine learning classifier will answer the question: Will there
be a storm at a location in a three hour time window?

Due to the fact that the EPS forecast is released every 12
hours it is important to note that each thunderstorm observa-
tion will corresponds with multiple forecasts. For example, the



storm observations from June 6 2018 at 15:00 were associated
with the 00:00 forecast from June 5, 2018 with time horizon
39 hours, the 12:00 forecast from June 5, 2018 with time
horizon 27 hours, the 00:00 forecast from June 6, 2018 with
time horizon 15 hours, and also the 12:00 forecast from
June 6, 2018 with time horizon 3 hours .Furthermore, given
the ensemble characteristics of EPS data, each observation-
forecast pair consisted of the 50 perturbed members of the
forecast.

C. EPS Parameter Selection - Physics of thunderstorms

Thunderstorms are most likely to occur under the following
conditions [6]:

• Sufficient moisture in the atmosphere to form and main-
tain the cloud.

• Atmospheric instability determined by the vertical tem-
perature profile or lapse rate.

• Lifting force or trigger mechanism to produce early sat-
uration of air. In convective storms, this trigger action is
typically caused by heat from the earth’s surface causing
moist air to rise.

With these conditions in mind 17 EPS parameters were
selected to train the NN model. The list of parameters and
their short name notation 1 is provided below.

• 2 metre dewpoint (2d)
• 2 metre temperature (2t)
• Boundary layer height (blh)
• Boundary layer dissipation (bld)
• Convective available potential energy (cape)
• Convective available potential energy shear (capes)
• Convective inhibition (cin)
• Convective precipitation (cp)2

• Geopotential (z)
• K index (kx)
• Mean sea level pressure (msl)
• Surface latent heat flux (slhf)
• Surface pressure (sp)
• Surface sensible heat flux (sshf)

1ECMWF Parameter Database: https://apps.ecmwf.int/codes/grib/param-db
2While the Convective precipitation (cp) parameter is provided as precip-

itation accumulated since the release of the forecast, the model was trained
using the difference in cp between the next and current step.

• Total column water (tcw)
• Total column water vapor (tcwv)
• Total totals index (totalx)
Besides the EPS parameters, the model was also trained

using the hour of the day and the range of the forecast as
parameters, for a grand total of 19 parameters.

D. Model Architecture

The NN classifier was formulated using a multilayer per-
ceptron model for binary classification using the python keras
library. Our model consisted of four layers; a 19 node input
layer, a 16 node hidden layer, a 16 node hidden layer, and a
single node output. The artificial neural network was trained
with the training and validation data sets using a binary cross-
entropy loss function. A class weight function was applied to
account for the unbalanced classes. Lastly, in our experiment
each individual grid point was considered as an independent
sample. The neural network did not take into account the
coordinates of the grid point, instead it was trained to provide
the likelihood of convection given only the EPS parameters.

V. RESULTS

The test dataset was comprised of 3 days worth of data;
June 6th. June 7th, and June 11th. Our dataset proved to be
unbalanced with roughly 14% of data points belonging to the
”convective area” class.

A. Indicator Performance

The baseline convection classifier was evaluated using a
”low” Total Totals Index threshold value of 44 to account for
moderate, heavy and severe thunderstorms.

The skills of the baseline and neural network convection
classifiers were evaluated using a Receiver Operating Charac-
teristic (ROC) curve. Threshold values for the baseline and NN
classifier were chosen based on points closest to the top left
corner of the ROC space and a normalised confusion matrix
was obtained for each. Figure 3 shows the ROC curve and
confusion matrix for each classifier, from the figure it is clear
that NN indicator performs better than the baseline. While the
specific values pertaining to the AUC and threshold of both
the baseline and neural network indicator are dependent on
the specific days being evaluated, we expect similar results
for other days.

(a) Grid overlay on storm polygon. (b) 12 RDT images in one 3 hour EPS time step. (c) Binary representation of con-
vection

Figure 2: Processing steps for RDT data.



A graphical representation of the convection indicators can
be seen in figure 4. The left two images are based on the actual
storm data (aggregated and binary) from June 11th 15:00 -
18:00, while the right two are the baseline and neural network
predictions made 27 hours in advance. Compared to the
baseline, the NN seems to make better predictions in the UK,
Spain, southern France, and the Balkans, but underperforms
in regions such as central Italy and Scandinavia.

Figure 3: Comparison of baseline and neural network classi-
fiers based on ROC curve and confusion matrix.

VI. CONCLUSION AND FUTURE WORK

A neural network model to classify convective areas within
a 3 hour period was developed, the model showed improved
skill over a convection indicator found in the literature. In
the next phase of our research we will continue developing
our algorithm using hourly EPS forecast, thus refining the
predictive time window and enable better decision making
during ATFM operations. We also intend to expand our dataset

to cover a full year worth of data to improve the model’s
ability to identify thunderstorms during other seasons apart
from summer. Lastly, in this analysis we handled the most
generic case of predicting whether there will be a storm of
any kind, however, in the future we hope to train our model
based on a filtered set of storms that match a certain criteria. A
model could be developed to allow prediction of storms with a
certain severity, or storms that extend beyond a certain altitude
level as these would be most impactful for ATFM operations.
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Figure 4: Graphical representation of thunderstorm observations and convection predictions made 27 hours in advance.


